Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 103: 109789, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349507

RESUMO

Enzymatic biodegradation of pharmaceuticals, using enzymes such as laccase, is a green solution for the removal of toxic pollutants that has attracted growing interest over recent years. Moreover, the application of immobilized biocatalysts is relevant for industrial applications, due to the improved stability and reusability of the immobilized enzymes. Thus, in the present study, laccase was immobilized by adsorption and encapsulation using poly(l-lactic acid)-co-poly(ε-caprolactone) (PLCL) electrospun nanofibers as a tailor-made support. The produced biocatalytic systems were applied in the biodegradation of two commonly used anti-inflammatories, naproxen and diclofenac, which are present in wastewaters at environmentally relevant concentrations. The results showed that under optimal process conditions (temperature 25 °C, pH 5 and 3 for naproxen and diclofenac respectively), even from a solution at a concentration of 1 mg L-1, over 90% of both pharmaceuticals was removed by encapsulated laccase in batch mode. Both immobilized enzymes also exhibited high reusability: after five reaction cycles approximately 60% and 40% of naproxen and diclofenac were removed by encapsulated and adsorbed laccase respectively. In addition, a thorough analysis was made of the products of biodegradation of the two studied pollutants. Furthermore, toxicity study of the mixture after biodegradation of the pharmaceuticals showed that the solutions obtained after the process were approximately 65% less toxic than the initial naproxen and diclofenac solutions.


Assuntos
Biodegradação Ambiental , Diclofenaco/metabolismo , Lacase/metabolismo , Nanofibras/química , Naproxeno/metabolismo , Animais , Artemia/efeitos dos fármacos , Biocatálise , Diclofenaco/química , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Reutilização de Equipamento , Concentração de Íons de Hidrogênio , Naproxeno/química , Poliésteres/química , Temperatura , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...